翻訳と辞書 |
Markov–Kakutani fixed-point theorem : ウィキペディア英語版 | Markov–Kakutani fixed-point theorem In mathematics, the Markov–Kakutani fixed-point theorem, named after Andrey Markov and Shizuo Kakutani, states that a commuting family of continuous affine self-mappings of a compact convex subset in a locally convex topological vector space has a common fixed point. ==Statement== Let ''E'' be a locally convex topological vector space. Let ''C'' be a compact convex subset of ''E''. Let ''S'' be a commuting family of self-mappings ''T'' of ''C'' which are continuous and affine, i.e. ''T''(''tx'' +(1 – ''t'')''y'') = ''tT''(''x'') + (1 – ''t'')''T''(''y'') for ''t'' in () and ''x'', ''y'' in ''C''. Then the mappings have a common fixed point in ''C''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Markov–Kakutani fixed-point theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|